
Verification results feedback
for Fiacre intermediate language

Faiez Zalila
Toulouse University
Toulouse, France

faiez.zalila@enseeiht.fr

Xavier Crégut
Toulouse University
Toulouse, France

xavier.cregut@enseeiht.fr

Marc Pantel
Toulouse University
Toulouse, France

marc.pantel@enseeiht.fr

Abstract

Model verification through a translational semantics is experienced to check safety and
liveness properties of software architectures with some Domain-Specific Modelling Lan-
guages (DSML) like for example UML, AADL, SysML or SDL in order to reuse model-
checking tools. This approach has two barriers: (1) the semantic gap between the two
areas, and (2) feedback and interpretation of verification results at the DSML level. Some
intermediate languages, like for example Fiacre, are proposed in order to reduce the
important semantic gap and to facilitate the definition of translational semantics. Nev-
ertheless, feedbacks are still to be done. In this paper, we address the interpretation of
results generated by the model checking tools and their feedback at the intermediate lan-
guage level (Fiacre in our case) as scenarios that will be the basis to leverage the feedback
at the DSML level.

keywords: Domain specific modeling languages, Fiacre intermediate language, feed-
back verification results

1 Introduction and related works
Design of critical embedded software, using high level domain-specific modelling languages
(DSML), is becoming increasingly complex. The need for safety development becomes
a stringent requirement. Model checking is recommended as one of the solutions to for-
mally verify finite-state real-time embedded systems. To support it, a specific verification
toolchain is often developed for each couple of modelling language / formal tool. In DSML
area, [8] focuses on how to map DSML definitions (abstract syntax, concrete syntax, static
semantics and behavioral semantics of a language) into Alloy, a structural language based
on first-order logic, which provides effective techniques for model checking. In [12], Pel-
liccione et al. present a software tool platform for the model-based design and validation
of software architectures, named Charmy, that offers an extension called SASim deriving
from Theseus approach in [9]. Both translate the violation trace from SPIN model checker
to a generated sequence diagram and an animated UML state diagrams. vUML [11] also
use the same approach. All these works are based on a very ad hoc approach.

The important semantic gap between DSML and formal levels is the first barrier to
designers. The Fiacre language [3] – designed as part of the TopCased project [4] and
developed in the Quarteft project – offers a solution to simplify the development of these
verification toolchains. Indeed, Fiacre provides high level constructs to make easier the
translation from DSML model. Furthermore, it is an intermediate language that allows
to target several verification tools (Tina1 or Cadp2). The toolchain can then be split in
a specific part from the DSML to Fiacre and a generic and reusable one from Fiacre
to one of the supported verification toolbox. The second barrier concerns the feedback
of verification results. They are obtained on the formal level and have to be leverage to
the domain level. The Fiacre intermediate language is again a way to split feedbacks
from Fiacre intermediate model to the DSML model preceded by a low-level one from

1http://homepages.laas.fr/bernard/tina
2http://www.inrialpes.fr/vasy/cadp/

P. Collet, P. Merle (eds.); Conférence en IngénieriE du Logiciel (CIEL), Juin 2012, pp. 1–6 1

faiez.zalila@enseeiht.fr
xavier.cregut@enseeiht.fr
marc.pantel@enseeiht.fr
http://homepages.laas.fr/bernard/tina
http://www.inrialpes.fr/vasy/cadp/

Feedback verification results Zalila, Crégut and Pantel

verification tools to Fiacre level. In this paper, we concentrate on the latter one and more
precisely on feedbacking from Tina toolbox to Fiacre language.

The paper is organized as follows. In Section 2, we present the Fiacre language using
an illustrative program and show formal verification results obtained using Tina toolbox.
Section 3 introduces various steps to generate Fiacre scenario from verification results.
Last section contains concluding remarks and perspectives.

2 Fiacre and behavioral extensions
Fiacre is a (French3) acronym for an Intermediate Format for Embedded Distributed
Components Architectures. It is a formal specification language to represent both the
behavioral and timing aspects of real-time systems [4]. The Fiacre language, formally
described in [3], is composed of two syntactical constructs, processes and components. A
process describes the behavior of sequential components. It is defined by a set of con-
trol states, each associated with an expression that specifies state transitions. Expressions
are built from deterministic constructs available in classical programming languages (as-
signments, conditionals, sequential composition, . . .), non-deterministic constructs (choice
and non-deterministic assignments), communication events on ports, and transition to next
state.

A component describes the composition of processes, possibly in a hierarchical manner.
It is defined as a parallel composition of components and processes communicating through
ports and shared variables. Components allow to restrict the access mode and visibility of
shared variables and ports.

Fiacre supports two of the most common communication paradigms: communication
through shared variables and synchronization through (synchronous) communication ports.
In the latter case, it is possible to associate time and priority constraints to communication
over ports. The use of timing constraints is illustrated in the example of Listing 1 which
models the operation of a simple manufacturing plant. A factory builds products from a
command line. There are two kinds of machines available M1 and M2. A line (an instance
of Linebehavior process in the Main component, line 39 in Listing 1) uses just one machine
(an instance of Machine process, line 42). A worker (an instance of Worker process, line
37) operates the line. The factory is subject to operational and legal requirements: (1)
during their work, workers should have 5 minutes pauses (line 21 in Listing 1); (2) the
duration of a machine task does not exceed 5 minutes (time interval on line 34). A Real-
time extensions for the Fiacre language is proposed in [7]. It allows the specification of
real-time properties. Line 4 of Listing 1 is a property based on the leadsto pattern for
the following requirement: “the first instance of the Worker process must pause before 5
minutes of work ”.

frac is a compiler which generates a Time Transition System (TTS) – a generaliza-
tion of Time Petri Nets (TPN) with data variables and priorities – from the states of
the processes and timed transitions of the Fiacre program. pFrac4 (Frac with real-time
specification patterns) is a prototype of frac compiler, which takes in account real-time
properties. It is based on the use of observers in order to transform the verification of
timed patterns [2]. The Tina verification toolbox [5] offers several tools to work with TTS
descriptions. For instance, for verification purposes, TTS specifications can be used by
selt – a model-checker for a State-Event version of LTL. Applied on the factory program,
the property is found to fail and a scenario is generated as a sequence of fired transitions:

Linebehavior_1_t0_Worker_1_t0$0

Machine_1_t0_Linebehavior_1_t1$0
_ERROR_1$5

3Fiacre stands for Format Intermédiaire pour les Architectures de Composants Répartis Embarqués.
4http://homepages.laas.fr/~nabid/pfrac.html

2 Actes de CIEL 2012

http://homepages.laas.fr/~nabid/pfrac.html

Feedback verification results Zalila, Crégut and Pantel

1 type machinename i s union M1 | M2 end
2 type linename i s union l ine1 | l ine2 end
3
4 property Worker_1_sWork leadsto Worker_1_sPause inlessthan 5
5
6 process Linebehavior [LStartl ine : linename , LStartMachine : machinename ,
7 LEndMachine : machinename , LEndline : linename]
8 (ln : linename , mn: machinename) i s
9 states Idle , Startmachine , WaitEndmachine , NextMachine , Restart

10 from Idle LStartl ine ! ln ; to Startmachine
11 from Startmachine LStartMachine !mn; to WaitEndmachine
12 from WaitEndmachine LEndMachine?mn; to NextMachine
13 from NextMachine wait [0 , 0] ; to Restart
14 from Restart LEndline ! ln ; to Idle
15
16 process Worker [WStartline : linename , WEndline : linename]
17 (l inepermis : linename) i s
18 states Idle , Work, Pause
19 from Idle WStartline? linepermis ; to Work
20 from Work WEndline? linepermis ; to Pause
21 from Pause wait [5 , 5] ; to Idle
22
23 process Machine [MStartMachine : machinename , MEndMachine: machinename]
24 (nm: machinename , linepermis : linename) i s
25 states Idle , Work
26 from Idle MStartMachine?nm; to Work
27 from Work MEndMachine!nm; to Idle
28
29 component Main i s
30 port
31 Start l ine : linename in [0 , 0] ,
32 Endline : linename in [0 , 0] ,
33 StartMachine : machinename in [0 , 0] ,
34 EndMachine : machinename in [0 , 5]
35 par ∗ in
36 par ∗ in
37 Worker [Start l ine , Endline] (l ine1)
38 | |
39 Linebehavior [Start l ine , StartMachine , EndMachine , Endline] (l ine1 , M1)
40 end
41 | |
42 Machine [StartMachine , EndMachine] (M1, l ine1)
43 end Main

Listing 1: A factory example in Fiacre

The scenario shows two transitions fired at time 0 and an error transition fired at time
5. The first transition Linebehavior_1_t0_Worker_1_t0 explains the start-up of pro-
duction line (line1) by the worker who enters into Work state. The second transition
Machine_1_t0_Linebehavior_1_t1 shows the use of the machine (M1) by the previously
started line. The error transition is not part of the Fiacre program. It has been added by
Pfrac tool as an observer. It can only be fired after 5 time units and has a higher priority
than the other competing transitions. The firing of the error transition means that the
first instance of Worker process has spend 5 time units in the Work state and thus the
property failed. Obviously, this scenario is not easy to understand for the designer. So we
have to feedback verification results at the Fiacre level and then at the DSML level. Our
approach consists in generating a Fiacre scenario from the previous TPN scenario.

3 Feedback verification results
One purpose is to provide a scenario at the Fiacre level which could be then leveraged
at the DSML level [6]. Unfortunately, frac does not provide traceability information
required to feedback verification results. However, we can retrieve them by consulting
intermediate steps during Fiacre program compilation.

3

Feedback verification results Zalila, Crégut and Pantel

Indeed, frac can generate an intermediate textual format that presents an hybrid
TTS, named “instantiated Fiacre ”. It contains TPN specifications (transitions, states,
priorities, . . .) and data processing (guards, assignments, . . .) and can thus be used
to generate traceability links between TTS and the original Fiacre program. Listing 2
shows a part of the instantiated Fiacre for factory program. We choose to show the corre-
sponding transitions in the generated TPN scenario: The first one explains the Linebehav-
ior_1_t0_Worker_1_t0 transition which has a label named Main_1_pStartline that cor-
responds to a synchronisation on Starline port in the Main component. It has also a “from
statement” that contains the changed places Linebehavior_1_sIdle and Worker_1_sIdle
which matches respectively changed states, Idle state in the first instance of Linebehavior
process and idle state in the first instance of Worker process in the Fiacre program.
Next, it contains an “assignment statement” which describes the data processing in the TTS
description. After, it explains entered places which correspond to entered states in the
Fiacre program. Finally, a time interval is associated with each instantiated Fiacre
transition. The instantiated Fiacre represents an information that can be used as a
source to generate traceability links. It shows an intermediate artifact, generated during
compiling the Fiacre program, which represents a required information to find appropri-
ate elements (component, process, instance, state, variable, etc.) in the Fiacre level. It
contains also all TPN elements (transitions, places, labels, etc.). These features allow to
create links between both levels and combine TPN elements with Fiacre ones. Instan-
tiated Fiacre artifact involves a set of Instantiated Fiacre transitions which have the
same syntax than the Fiacre ones: a change state statement (from statement), followed
by data processing statements (assignments, conditional statements, etc.), ended up with
enter state statement (to or loop statement).

1 Trans : : Linebehavior_1_t0_Worker_1_t0 : Main_1_pStartline & Main
2 from Linebehavior_1_sIdle Worker_1_sIdle
3 Worker_1_vlinepermis := Linebehavior_1_vln ;
4 to Linebehavior_1_sStartmachine Worker_1_sWork
5 in [0 , 0]
6
7 Trans : : Machine_1_t0_Linebehavior_1_t1 : Main_1_pStartMachine & Main
8 from Linebehavior_1_sStartmachine Machine_1_sIdle
9 Machine_1_vnm := Linebehavior_1_vmn ;

10 to Linebehavior_1_sWaitEndmachine Machine_1_sWork
11 in [0 , 0]

Listing 2: Part of the Instantiated Fiacre generated from factory program

This particularity reduces efforts to manipulate the instantiated Fiacre in order to use
it on the establishment of traceability links. Manipulating an intermediate step generated
during compiling can be an appropriate way because it allows to capture the same progress
report for each Fiacre program. The corresponding tooling has been implemented with
xText [1]; a textual grammar is defined to parse the instantiated Fiacre. It is inspired by
the Fiacre one. Thanks to naming conventions, traceability to Fiacre elements is made
possible. So, through an ATL transformation [10], links are added between the Fiacre
and TPN levels to generate a traceability model named “linked Fiacre ”. Its metamodel
is similar to the instantiated one (generated by xText). It is enriched with references
towards TPN and Fiacre appropriate elements. The linked Fiacre is seen as supporting
traceability model in order to feedback verification results.

Our Goal is to use this traceability information with the generated scenario from selt
model checker in order to generate a Fiacre one that is a succession of events. A part
of the Fiacre scenario is shown in the Figure 1. To generate the Fiacre scenario, we
have to find the corresponding transition in the instantiated Fiacre model from the tran-
sition in the TPN scenario. For example, the first event in the TPN scenario (Linebe-
havior_1_t0_Worker_1_t0) corresponds to the first instantiated Fiacre transition in
the instantiated Fiacre model (line 1 in Listing 2). Next, if this transition has a label

4 Actes de CIEL 2012

Feedback verification results Zalila, Crégut and Pantel

(Main_1_pStartline), it is a synchronisation on the corresponding port (Startline) in the
component (Main). This synchronisation event produces other port events on process
instances (SynchronisationEvent, ReceiveEvent or SendEvent). From and To statements
generate state events (ChangingEvent or EnteringEvent) on process instances. Finally, be-
tween them, assignment statements produce changing value of variables (VariableEvent).
The time shown in the TPN scenario is the date of firing transition. A second ATL trans-
formation generates the Fiacre scenario from the traceability model (linked Fiacre) and
the TPN scenario. Figure 1 shows Fiacre events generated from the second transition in
TPN scenario. for each event, we associate the time generated in the TPN scenario on
the corresponding transition, one or many concerned instances and the node which defines
these instances (component or process declarations).

time EventType Instance Node

0 SynchronisationEvent port: StartMachine Linebehavior, Machine Main

0 ChangingEvent state: Startmachine Linebehavior Linebehavior

0 SendEvent port: LStartmachine, exp: mn Linebehavior Linebehavior

0 EnteringEvent state: WaitEndmachine Linebehavior Linebehavior

0 ChangingEvent state: Idle Machine Machine

0 ReceiveEvent port: MStartMachine, pattern: nm Machine Machine

0 EnteringEvent state: Work Machine Machine

Figure 1: Part of a generated Fiacre scenario

We rely on the architecture defined in TopCased for executable DSML– and more
precisely on the runtime events that trigger evolution on one model – to record traceability
links between the domain level and the formal level. Figure 2 shows the mapping between
Fiacre and TPN levels. On the TPN side, there is just one event that is FireTransition-
Event that corresponds to several Fiacre events on the Fiacre side. These extensions
allow to capture Fiacre events. Generating the Fiacre scenario is a step to make the
Fiacre-TPN chain transparent. So one has only to concentrate on the DSML and Fi-
acre back and forth mappings without having to deal with model-checker specific formal
languages. It only relies on Fiacre.

time : Int
Event

Transition

VariableEvent

PortEvent

StateEvent

Place

Label

Process_decl

Component_decl

Port

State

Instance

1..* instance

1 petrinet_event

1 port1 node

SynchronisationEvent

SendEvent

ReceiveEvent

1..* events

Node_decl

Var

1 var1 state

ChangingEvent

EnteringEvent

time : Int
FireTransitionEvent

1 transition

Exp

0..* exp

Pattern

0..*
pattern

name : String
Node

Arc

source

target

outgoings

0..*
incomings

0..*

0..1
label

0..* state

Port_dec

0..*
port_dec

0..* port

Var_dec 0..*

var
Fiacre
DMM

Fiacre
events

Time PetriNet
events

Time PetriNet
DMM

0..*
var_dec

ErrorEvent

Figure 2: Event-based mapping between Fiacre and TPN metamodels

5

Feedback verification results Zalila, Crégut and Pantel

4 Conclusion and perspectives
In this paper, we have presented the current state of the feedback of verification results:
we are able to construct a Fiacre scenario from the one generated by formal tools (Tina
toolbox) thanks to the building of a traceability model. The proposed mapping of Fiacre
domain and its events with the formal domain and its events (TPN in our case) can be
adapted if we want to change formal techniques and to use others tools like for example
CADP toolbox. This change has been preceded by an extension which captures possible
events in the formal side. We are now working at leveraging it at the DSML level, so
that it can be used by model animators for example and thus made understandable to the
DSML users. This approach allows DSML experts to verify their DSML behaviors using
existing formal techniques and tools without the need to manipulate them; They should
just interact with the intermediate level which is more easier than the formal one.

References
[1] Tutorials and documentation for xtext 2.0. http://www.eclipse.org/Xtext/documentation/.
[2] N. Abid, S. Dal Zilio, and D. Le Botlan. Verification of Real-Time Specification

Patterns on Time Transition Systems. Technical Report LAAS n.t 11365, 2011.
[3] B.Berthomieu, J.P.Bodeveix, M.Filali, H.Garavel, F.Lang, F.Peres, R.Saad,

J.Stoecker, and F.Vernadat. The syntax and semantics of fiacre - draft version 3.0.
LAAS Reports 07264, LAAS, 36p., 2011-01-14.

[4] B. Berthomieu, J-P. Bodeveix, M. Filali, P. Farail, P. Gaufillet, H. Garavel, and
F. Lang. FIACRE: an Intermediate Language for Model Verification in the topcased
Environment. In 4th European Congress Embedded Real Time Software (ERTS),
January 2008.

[5] B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA – Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal of
Production Research, 42(14):2741–2756, July 2004.

[6] B. Combemale, L. Gonnord, and V. Rusu. A Generic Tool for Tracing Executions
Back to a DSML’s Operational Semantics. InModelling Foundations and Applications,
7th European Conference, ECMFA 2011, Birmingham United Kingdom.

[7] S. Dal Zilio and N. Abid. Real-time Extensions for the Fiacre modeling language. In
MoVep 2010, Summer School on Modelling and Verifying Parallel Processes, Aachen,
Allemagne, June 2010. 6 pages FNRAE Quarteft.

[8] Z. Demirezen, M. Mernik, J. Gray, and B. Bryant. Verification of dsmls using graph
transformation: a case study with alloy. In Proceedings of the 6th International Work-
shop on Model-Driven Engineering, Verification and Validation, MoDeVVa ’09.

[9] H. Goldsby, Betty H. C. Cheng, S. Konrad, and S. Kamdoum. A visualization frame-
work for the modeling and formal analysis of high assurance systems. In Proceedings of
the 9th international conference on Model Driven Engineering Languages and Systems,
MoDELS’06, pages 707–721, Berlin, Heidelberg, 2006.

[10] F. Jouault and I. Kurtev. Transforming Models with ATL. In Satellite Events at
the MoDELS 2005 Conference, Proceedings of the Model Transformations in Practice
Workshop, volume 3844 of LNCS, pages 128–138, Jamaica, 2005. Springer.

[11] J. Lilius and I.P. Paltor. vuml: a tool for verifying uml models. In Automated Software
Engineering, 1999. 14th IEEE International Conference on., pages 255 –258, oct 1999.

[12] P. Pelliccione, P. Inverardi, and H. Muccini. Charmy: A framework for designing and
verifying architectural specifications. IEEE Trans. Soft. Eng., 35(3):325–346, 2009.

6 Actes de CIEL 2012

	Introduction and related works
	Fiacre and behavioral extensions
	Feedback verification results
	Conclusion and perspectives

